Instance-dependent cost-sensitive learning for detecting transfer fraud

نویسندگان

چکیده

Card transaction fraud is a growing problem affecting card holders worldwide. Financial institutions increasingly rely upon data-driven methods for developing detection systems, which are able to automatically detect and block fraudulent transactions. From machine learning perspective, the task of detecting transactions binary classification problem. Classification models commonly trained evaluated in terms statistical performance measures, such as likelihood AUC, respectively. These however, do not take into account actual business objective, minimize financial losses due fraud. Fraud be acknowledged an instance-dependent cost-sensitive problem, where costs misclassification vary between instances, requiring adapted approaches model. In this article, threshold derived, based on cost matrix transfer detection, that allows making optimal cost-based decision each transaction. Two novel classifiers presented, lasso-regularized logistic regression gradient tree boosting, directly proposed measure when The implemented R packages cslogit csboost, compared against state-of-the-art publicly available data set from competition website Kaggle proprietary set. results experiments highlight potential reducing by adopting methods.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid model based on machine learning and genetic algorithm for detecting fraud in financial statements

Financial statement fraud has increasingly become a serious problem for business, government, and investors. In fact, this threatens the reliability of capital markets, corporate heads, and even the audit profession. Auditors in particular face their apparent inability to detect large-scale fraud, and there are various ways to identify this problem. In order to identify this problem, the majori...

متن کامل

Deep Multi-Instance Transfer Learning

We present a new approach for transferring knowledge from groups to individuals that comprise them. We evaluate our method in text, by inferring the ratings of individual sentences using full-review ratings. This approach combines ideas from transfer learning, deep learning and multi-instance learning, and reduces the need for laborious human labelling of fine-grained data when abundant labels ...

متن کامل

A cost-sensitive decision tree approach for fraud detection

With the developments in the information technology, fraud is spreading all over the world, resulting in huge financial losses. Though fraud prevention mechanisms such as CHIP&PIN are developed for credit card systems, these mechanisms do not prevent the most common fraud types such as fraudulent credit card usages over virtual POS (Point Of Sale) terminals or mail orders so called online credi...

متن کامل

Cost-sensitive learning and decision making for massachusetts pip claim fraud data

In many real-life decision making situations the default assumption of equal (mis-)classification costs underlying pattern recognition techniques is most likely violated. Consider the case of insurance claim fraud detection for which an early claim screening facility is to be built to decide upon the nature of an incoming claim as either suspicious or not. This decision typically forms the basi...

متن کامل

MetaFraud: A Meta-Learning Framework for Detecting Financial Fraud

This appendix reports the results for the baseline and yearly/quarterly context-based classifiers when using the 1:10 regulator cost setting. Since the AUC values are computed across different cost settings (and are therefore the same for the investor and regulator situations), we report only the legitimate/fraud recall rates. Overall AUC values as well as results for the investor cost setting ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Operational Research

سال: 2022

ISSN: ['1872-6860', '0377-2217']

DOI: https://doi.org/10.1016/j.ejor.2021.05.028